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Abstract

In this paper we describe a system that
performs automatic real-time face verifica-
tion for use in such human-machine inter-
face applications as automated security sys-
tems. We demonstrate that simple corre-
lation strategies on template-based models
are sufficient for many applications in which
the identity of a face in a novel image must
be verified quickly and reliably from a single
reference image. We present the results of
testing the system on over 1000 face images,
including images acquired interactively by
the interactive system operating under real-
istic office-like conditions. The system has
been integrated into a screen locking appli-
cation which permits users access to work-
stations by performing face verification in
lieu of password authentication.

1 Introduction

While researchers have made numerous
attempts at solving the elusive problem
of face recognition, many approaches fo-
cus on constructing elaborate models for
representing human faces that in turn
require time-consuming recognition algo-
rithms and/or extensive training sessions.
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However, for certain practical applications,
speed and ease of use are overriding consid-
erations, and the conditions under which
faces are imaged are stable enough that
simple models with fast recognition algo-
rithms will suffice.

This paper presents a real-time face ver-
ification system that operates in realistic
conditions and is directly applicable to the
task of automated security. The choice
of representation and verification strategy
is influenced by the following requirements
demanded by such practical applications:

e Fast, real-time execution.
e Inexpensive hardware.
e Convenience and ease of use.

Low rate of false entries.

e Flexible security level.

The system models a face with templates
of facial features extracted from raw image
data and compares face models and images
using normalized cross-correlation as a dis-
tance measure. The models stored in the
system’s library are built from only a sin-
gle reference image per person. The narrow
range of targeted applications allows us to
exploit the following assumptions about the
conditions under which faces presented to
the system are imaged:

e The user provides a consistent facial
expression.



e The user presents a frontal face view.

e The background scene is
strained, but the face to be verified is

not occluded.

uncon-

e The

formly among images.

scene illumination varies uni-

This paper first outlines relevant existing
work in face recognition in Section 2. Sec-
tion 4 describes the template-based repre-
sentation of human faces. Section 3 outlines
the normalized cross-correlation coefficient
that performs image comparison. Section 5
presents the algorithm used by the verifica-
tion system, and Section 6 describes exper-
iments and results.

2 Related work

Terzopolous and Waters [Waters,et.al.,91]
and Essa and Pentland [Essa,et.al.,95]
model faces with physical 3D models that
are useful for facial expression recognition
and potentially for recognition under vary-
ing expression. Gordon [Gordon,92] uses
features extracted from 3D range data to
model faces for recognition, an approach
that requires special hardware for data ac-
quisition.

Feature-based approaches locate a col-
lection of facial characteristics in a face
image and build a model from the spa-
tial configurations of these feature points
[Manjunath,et.al,92]. This approach may
be problematic due to error in the measure-
ments of feature configurations taken from
images of a single person. If the error is
of the same order as the variation among
measurements taken from images of differ-
ent people [Brunelli,et.al.,93], the technique
will discriminate poorly among faces.

The most common face recogni-
tion strategies that use representations
based directly on raw grey-level inten-
sity data are the template-based models
of Beymer [Beymer,93] and Brunelli and

Poggio [Brunelli,et.al.,93] and the eigenvec-
tor decompositions of Turk and Pentland
[Turk,et.al.,91, Moghaddam,et.al.,94]. The
two methods are analogous in that both
compare face images by measuring the sum
of squared differences between subimages
containing facial features. While template-
matching measures this distance in the
full N-dimensional image space for an N-
pixel template, the eigenvector decompo-
sition technique measures this distance in
a lower-dimensional subspace, called the
eigenspace, whose k< <N basis vectors rep-
resent directions of highest variance among
images. Comparing two images in the
full image space requires O(N) operations
while comparing their projections into the
eigenspace requires only O(k) operations.
This dimensionality reduction may improve
efficiency in general face recognition tasks
when a single image must be compared to
a large set of images. However, in terms of
applicability to real-time verification tasks
that require the comparison of only one
pair of images, the projection of an im-
age into the eigenspace incurs an extra cost
of O(kN) that outweighs the computation
time saved by computing distance in the
eigenspace.

3 Image Comparison

Our face verification system is based on the
work of Beymer [Beymer,93] and Brunelli
and Poggio [Brunelli,et.al.,93], who com-
pare two face images by computing the
distances between pairs of subimages de-
picting salient facial features using normal-
ized cross-correlation as a distance mea-
sure. The normalized cross-correlation co-
efficient between a template T and a sub-
image 5 of identical dimensions is defined
as
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are the N-pixel template and subimage
treated as vectors of grey-level values, oy
and oy are the respective standard devi-
ations of the template and the subimage,
and e = % Y50 4 and pe = § 008,
are their respective means.

The normalized cross-correlation coeffi-
cient reduces the influence of ambient scene
illumination on the image by effectively
adjusting the pixel values to have zero
mean and unit variance If we assume T
and S have been normalized in this man-
ner, maximizing the cross-correlation > ¢;s;
is equivalent to minimizing the Euclidean
distance 3 (¢; — s;)? between two images,
since ) s? = 1.

4 Face Representation

This section presents the model used by the
system to represent faces. The system ex-
pects as input a novel image with a pro-
posed identity and returns confirmation or
denial of the face’s identity using a refer-
ence library of one face model per person.
Under the assumption that the face of a
given person will have roughly the same ex-
pression in all input images, only a single
reference image is required to build a face
model.

Offline entry of a new user into the li-
brary of models consists of capturing a sin-
gle frame of the user’s face and extracting
templates of facial features from the ref-
erence image. To ensure that the model
is accurately built, six points demarcating
prominent facial features, the left and right
eye centers, the left and right nose lobes,
and the left and right mouth corners, are
manually labeled. The left and right eye
centers are reference points for automati-
cally normalizing the new library entry to
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Figure 1: Grey-level and filtered templates
comprising a face model.

ensure that every model is scaled, rotated,
and translated to a standard width, ori-
entation, and position.
points also guide the automatic extraction
of subimages of each eye, the nose, the
mouth, and the whole face.

The six feature

Figure 1 displays an example set of fea-
ture templates extracted from normalized
reference images. In addition to the set of
grey-level templates, each model includes
templates extracted from the result of filter-
ing the reference image with the following
differential operators: the horizontal and
vertical components of discrete approxima-
tions of the image gradient, the magnitude
of the gradient image, and a discrete ap-
proximation of the Laplacian of the image.

The eye templates and full face image
are stored at several scales to compensate
for the variable size of a face in an im-
age when performing face and feature de-
tection. Low resolution versions of eye and
face templates are also stored for use in the
hierarchical correlation strategy used in fea-
ture detection. Section 5 describes in detail
the use of multiple resolutions and scales for
locating the face and eyes. Figure 2 illus-
trates the scales and resolutions at which
eye and face templates are stored. The to-
tal storage requirement of the full template
set is less than 40 kilobytes.



Image Resolution
Scale % 11—6 61—4
0.8 | left eye | left eye | face
right eye | right eye
1.0 | left eye | left eye | face
right eye | right eye
1.2 | left eye | left eye | face
right eye | right eye

Figure 2: Organization of the multiresolu-
tion template set used for feature detection
at multiple scales.

5 Face Verification System

The real-time interactive system performs
the following steps to perform verification:

1. Capture a novel image and a proposed
identity from the environment.

2. Normalize the face in the image to
a standard position, orientation, and
scale.

3. Verify the match between the face and
its identity by matching templates of
facial features.

4. Return either a confirmation or a de-
nial of the face’s identity.

Since the verification is complete in sev-
eral seconds, the system may be modified
to continuously grab new images as long as
verification fails. Then if an authentic user
is rejected initially due to an unusual pose
or expression, one of the successive frames
is more likely to be accepted.

The following two sections describe the
normalization and verification components
of the system.

5.1 Normalization

Normalization of a face image reduces the
effects of variation in the distance, loca-
tion, and rotation of the head relative to
the camera. The number of scales at which
templates are stored determines the range

of distances from the camera that the sys-
tem can handle. This range may be set
to handle more or fewer distances falling
within a smaller or larger range by build-
ing more templates at varying scales into
the library models.

The normalization process is composed
of four stages: face detection, eye detection,
eye refinement, and geometric registration.
We adopt a coarse-to-fine search strategy to
use the first stage’s estimate for the face lo-
cation to guide the second stage’s search for
rough eye locations. The final stage then
uses the optical flow between these eye lo-
cation estimates and stored eye templates
to perform fine adjustments to the eye po-
sitions. Once the eye locations have been
found, the system brings the face into reg-
istration with the model face by performing
a two-dimensional rigid transformation and
uniform scaling using the eye centers as ref-
erence points.

Coarse face detection is performed on a
version of the input image that has been
multiply subsampled by a factor of two and
smoothed. As indicated in Figure 2, the
face model of the person to be verified con-
tains low resolution face templates at three
scales relative to the standard interocular
distance in order to compensate for varia-
tion in camera distance. Each of the face
templates is compared to a subimage cen-
tered at every pixel in the low resolution im-
age using the normalized cross-correlation
coeflicient defined in Section 3. Exhaustive
search returns a correlation coeflicient cor-
responding to each pixel in the low resolu-
tion input image. For each scaled face tem-
plate, a map of correlation coefficients indi-
cates how well each image location matches
the face template. The map that attains
the highest correlation coefficient indicates
the scale that most closely approximates
the face size in the input image. The other
two sets of face candidates are discarded,
and future processing uses only the tem-
plates at the chosen scale. Pixels that reach
local maxima in the correlation map for the



chosen scale are thresholded and returned
as potential face candidates. For each pos-
sible face center, regions above the face cen-
ter that are likely to contain the eyes are
delimited and passed to the eye finder to
restrict the search area to be explored at
higher resolutions. The face detector acts
primarily as an initial filter to immediately
discard image regions that bear little holis-
tic resemblance to the face in the model’s
reference image.

The eye detection component processes
the input image at a finer resolution level
than that of the face detection component
since the eye is a more detailed feature than
the face and requires more precise localiza-
tion. The eye search uses only the eye tem-
plates at the scale chosen by the face finder
as most closely approximating the scale of
the face in the input image. For each eye,
the eye template at the current resolution
level is correlated with the image only at
those points lying within the left or right
eye regions selected by the face finder. For
each eye, correlation at pixels in the se-
lected regions returns a map of correlation
coefficients. The system thresholds the pix-
els at the local maxima of each map, and re-
turns the surviving pixels as candidate eye
locations to be considered at the next finest
resolution level.

At each successive level, pixels not cen-
tered at eye locations will return lower re-
sults because at higher resolutions the cor-
relation coefficient is more sensitive to de-
tail. In order to save computation time, the
system stops performing hierarchical cor-
relation once the image resolution climbs
to 61—4 the original sampling density and re-
turns the pixel with the highest correlation
coeflicient for each eye.

Since the estimated locations have been
chosen at a low resolution, transforming the
coordinates to the corresponding locations
in the full resolution image may place the
eye positions several pixels away from the
actual eye centers. The refinement stage
uses optical flow to perform fine adjust-

ments to these locations.

To calculate the displacement of an eye
center estimate from its actual location, the
refinement step computes the optical flow
field between the stored eye template and
the subimage of identical dimensions cen-
tered at the current estimate. Each eye’s
position is then adjusted by the flow vector
at its estimated center. The flow computa-
tion and adjustment of eye labels may be
iterated in order to further improve preci-
sion.

Once the eye locations have been found,
the system brings the face into registration
with the model face by performing a two-
dimensional rigid transformation and uni-
form scaling using the eye centers as ref-
erence points. These two points determine
the rotation of the face with respect to the
camera in the plane parallel to the image
plane. Rotation of the image by this an-
gle fixes the line through the eye centers,
the interocular axis, at a horizontal orienta-
tion. The distance between the eye centers,
or interocular distance, reflects the distance
between the camera and the face. Scaling
the image to fix the interocular distance to
the standardized interocular distance in the
model brings the face to the standard tem-
plate size. Once the image is rotated and
scaled, the eye positions guide the extrac-
tion of a subimage containing only the face.
Extraction of the face subimage effectively
translates the face to a known position, so
that the input image is now geometrically
registered with the normalized model im-
age.

5.2 Verification

The verification stage receives a normalized
image from the eye detection stage, com-
putes the similarity between the image and
the model, classifies the list of similarity
measures as a good match or a poor match,
and makes the final decision to accept or re-
ject the individual.

After normalization, the eye locations in



the input image have been spatially regis-
tered with the eye locations in the refer-
ence image. Under the assumption that
the expressions in the two images are sim-
ilar, the other facial features should also
be well-registered when these two reference
points are aligned. The positions of the four
feature templates in the model guide the
extraction of subimages around the corre-
sponding features in the normalized input
image. Each feature template of the model
is correlated with the corresponding subim-
age of the input image using the normalized
cross-correlation coefficient.

Each comparison between template and
subimage returns a correlation coefficient.
If there are m templates of facial features
and n types of filters, a total of mn corre-
lation coefficients form a vector represent-
ing the similarity between the input im-
age and the model. Figure 3 shows the
subimage comparison between the input
and the model for each of four templates
and five preprocessing types. From this
20-dimensional vector, the system must de-
cide whether the similarity scores indicate a
match or a mismatch between the user and
the suggested identity and accept or reject
the user accordingly.

In the last stage of the verification sys-
tem, each list of d correlation coeflicients
is a point x = (21,...,24) in R?, where
z; € [—1,1], to be classified as a positive
or negative example. The classifier must
accept the correlation vector if the correla-
tion scores indicate a match, and reject if
the scores suggest a false entry. Geomet-
rically, an ideal classifier defines a surface
in R? that separates the positive examples
from the negative examples. Figure 4 shows
a set of points representing 20-dimensional
correlation vectors projected from IR?° onto
R°.

Our system’s classifier is a modified near-
est mean classifier. In our case, there are
only two classes, a positive class and a neg-
ative class, so if m, and m,, are the positive
and negative class means respectively, then

the classifier’s decision rule is as follows:

If d(m,, x) < d(m,, x), accept.
If d(m,, x) > d(m,, x), reject.

When d is the Euclidean metric, the de-
cision boundary, d(m,,x) = d(m,,x), is
linear and the decision rule is equivalent
to thresholding a weighted sum of the cor-
relation vector components. The decision
boundary is therefore a hyperplane in R?.

Since the negative examples with low co-
efficients are easy to identify as mismatches,
while those with higher coeflicients are dif-
ficult to distinguish from positive examples,
we tune the classifier to separate the points
lying near the boundary between positive
and negative examples. We consider only
those negative examples with correlation
scores high enough to be potentially mis-
taken for positive examples. We call such
negative examples near misses, and define
them to be the set of negative examples
falling within a fixed spherical neighbor-
hood around the positive mean. Only the
near misses are considered in the computa-
tion of the negative class mean.

The choice the radius r that defines the
set of near misses will determine the value
of m,, which in turn dictates the weights
w and the threshold T of the classifier. The
linear search for the ideal radius is therefore
a method for estimating the weights and
threshold of a linear classifier. The system

+  positive examples
+ negative examples

Figure 4: Projection of a set of examples in
R?° onto IR3.



Figure 3: Input and model subimage comparisons for each of 4 templates (left eye, right
eye, nose, mouth) and 5 preprocessing types (grey-level, horizontal gradient component,
vertical gradient component, gradient magnitude, and Laplacian operator).

applies the linear decision rule to the new
correlation vector returned by the correla-
tion stage and accepts or rejects the input
image according to the classifier’s decision.

6 Results

The face verification system has been in-
corporated into a screen locking tool for
a workstation with a camera. The pro-
gram runs a screen saver until it receives
a keystroke or mouse click. The system
then grabs a new frame, performs verifica-
tion with the current user’s identity, and
either unlocks the screen if verification suc-
ceeds or continues running the screen saver
if verification fails.

The system’s reliability was tested in
batch mode on a publicly available image
set and on a set of images acquired inter-
actively under realistic office conditions by
the real-time system.

The first set of images used for test-
ing belongs to the University of Essex face
database [Essex]. FEach 180 x 200 pixel
JPEG compressed 24 bit color image was
decompressed and converted to an 8 bit
grey-scale image. Images of faces with
glasses have been eliminated because the

specularities introduced by the lenses often
saturate the image resulting in a loss of in-
formation that impedes recognition. The
remaining image set contains 20 images per
person for 81 people, totaling 1620 images
of frontal views under constant illumination
in uncluttered background scenes.

The second set of images used for test-
ing was taken at the MIT Artificial Intel-
ligence Laboratory by the real-time veri-
fication system. The system runs on an
SGI Indy workstation and captures images
with the IndyCam digital color video cam-
era bundled with the workstation as a stan-
dard peripheral device. For each image, the
view is frontal, the eyes are open, visible,
and free of glasses, and the expression is
fixed across all images of a given individ-
ual. The set consists of 158 360 x 240 pixel
images of 48 people with an average of 4
images per person.

For each data set, the images are di-
vided into non-overlapping sets of training
and testing images. The correlation vectors
used for training are computed from images
drawn exclusively from the training set, and
the correlation vectors used for testing are
computed from images drawn only from the
testing set. The purpose of training is to



compute the positive and negative means
needed to perform the nearest mean classi-
fication. At the same time that the train-
ing stage computes the positive and nega-
tive class means, it can tune the system to
provide a particular level of reliability for a
given database. Just as varying the thresh-
old of a linear classifier effects a change
in the decision boundary, so does varying
the neighborhood from which negative ex-
amples are drawn to compute the negative
class mean.

A larger set of near misses generally pulls
the negative mean away from the posi-
tive class mean and increases the system’s
leniency, since a mean vector with low-
valued components will encourage misclas-
sification of high-scoring negative exam-
ples. A smaller set of near misses pulls
the negative class mean closer to the pos-
itive examples and increases the system'’s
level of security, since a mean vector with
high-valued components leads to misclas-
sification of low-scoring positive examples.
We make the assumption that only a lim-
ited number of images may be available for
training and therefore only use one image
per person to compute the positive and neg-
ative class means.

To evaluate the success rate of the system
and examine the trade-off between leniency
and security, figure 5 plots the ROC curves
for the both of the image sets. The varying
parameter for the nearest mean classifier is
the radius of the neighborhood around the
positive mean from which near misses are
drawn to compute the negative mean. The
varying parameter for the thresholded un-
weighted sum of features is simply the value
of the threshold. As expected, the two lin-
ear classifiers perform comparably well.

To evaluate the system’s overall reliabil-
ity, we maximize the verification rate, de-
fined as the total percentage of correctly
classified examples, both positive and neg-
ative. Table 1 displays the maximum veri-
fication rates attained by the two classifiers
on both image sets. Since the total number

‘ Classifier

Nearest Mean

Thresholded Sum

‘ AT Lab ‘ Essex ‘

99.5% | 99.85%
99.5% | 99.80%

Table 1: Comparison of verification accu-
racy rates between two classifiers on both
image sets.

of examples is dominated by negative exam-
ples, this accuracy rate is skewed in favor of
the system’s ability to reject false negatives.
For extremely high security applications, a
false acceptance rate of 99.999% can be at-
tained at the expense of a false rejection
rate of 90%.

The average execution time of the real-
time verification system alone is 2.7 seconds
on an Indy workstation with a MIPS R4400
processor. The entire system with a built-in
user interface that displays video and image
windows runs in an average of 5 seconds.

7 Conclusions

The real-time system demonstrates the fea-
sibility of using simple models and algo-
rithms to perform fast face verification for
specific applications. It may be installed
on any SGI Indy workstation with video in-
put from the IndyCam or an alternate video
source and provides easy entrance of a new
person into the model library within several
seconds. The system yields an estimated
false entry rate of less than .5% and may be
tuned to be more tolerant or less tolerant
depending on the security level demanded
by the application.
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